Institut für Feuerungs- und Kraftwerkstechnik

Publikationen 2021

Dissertationen und Veröffentlichungen des Jahres 2021

Dissertationen

S. Zimmermann, "Untersuchung eines Sprühwäscheverfahrens zur CO2-Abscheidung aus Rauchgasen kohlebefeuerter Kraftwerke". Dissertation Universität Stuttgart, 2021.
Kurzfassung

F. Carrasco Maldonado, "Pilot Testing, Simulation, and Scaling of an Oxyfuel Burner
for Cement Kilns". Dissertation Universität Stuttgart, 2021.
Kurzfassung

Y.-H. Chen, "Tar Reforming over Low-cost Active Materials for Gasification Derived Syngas". Dissertation Universität Stuttgart, 2021.
Kurzfassung

M. Paneru, "Use of Additive to Mitigate Deposit and Corrosion Problems in Pulverized Biomass-Fired Boilers". Dissertation Universität Stuttgart, 2021.
Kurzfassung

Kraftwerks- und Industriefeuerungen

  1. C. Kroumian, K. Fleiger, I. Veckenstedt, M. Voldsund, O. Cavalett, S. Roussanaly, J. Maier, V. Hoenig, K. Peloriadi, und G. Scheffknecht, „Description of the Work and Preliminary Results of the Ac2ocem Project in Facilitating Carbon Capture Technology in the Cement Industry Using Oxyfuel Combustion“, Trondheim Conference on CO2 Capture, Transport and Storage, 21-23 June 2021, Trondheim, Norway, 2021.
  2. A. Mack, J. Maier, und G. Scheffknecht, „Oxyfuel combustion of wood chips in a grate incineration system“, 30. Deutscher Flammentag für nachhaltige Verbrennung, 28.-29. September 2021, Hannover, Online Tagungsband, S. 682–690, 2021.
  3. R. Youssefi, T. Segers, F. Norman, J. Maier, und G. Scheffknecht, „Experimental Investigations of the Ignitability of Several Coal Dust Qualities“, Energies 2021, 14(19), 6323, 2021, doi: https://doi.org/10.3390/en14196323.
  4. R. Youssefi, J. Maier, und G. Scheffknecht, „Pilot-Scale Experiences on a Plasma Ignition System for Pulverized Fuels“, Energies 2021, 14(16), 4726, 2021, doi: https://doi.org/10.3390/en14164726.

Feuerungs- und Dampferzeugersimulation

    Rauchgasreinigung und Luftreinhaltung

    1. B. Baumgarten, P. Grammer, F. Ehard, O. Winkel, U. Vogt, G. Baumbach, G. Scheffknecht, und H. Thorwarth, „Evaluation of a metal mesh filter prototype with wet regeneration“, Biomass Conversion and Biorefinery, 2021, doi: https://doi.org/10.1007/s13399-021-01716-2.
    2. D. Scherer, ..., U. Vogt, A. Samad, und ..., „Dreidimensionale Observierung atmosphärischer Prozesse in Städten – 3DO“, Schlussbericht des Verbundvorhabens 3DO, 2021, doi: http://dx.doi.org/10.14279/depositonce-11314.
    3. J. Venkatraman Jagatha, A. Klausnitzer, M. Chacón Mateos, B. Laquai, E. Nieuwkoop, P. van der Mark, U. Vogt, und C. Schneider, „Calibration Method for Particulate Matter Low-Cost Sensors Used in Ambient Air Quality Monitoring and Research“, Sensors 21 3960, 2021, doi: https://doi.org/10.3390/s21123960.
    1. A. Samad und U. Vogt, „Mobile air quality measurements using bicycle to obtain spatial distribution and high temporal resolution in and around the city center of Stuttgart“, Atmospheric Environment, Bd. 244, Nr. 117915, 2021, doi: https://doi.org/10.1016/j.atmosenv.2020.117915.
    2. A. Samad, F. E. Melchor Mimiaga, B. Laquai, und U. Vogt, „Investigating a Low-Cost Dryer Designed for Low-Cost PM Sensors Measuring Ambient Air Quality“, sensors, Bd. 21, Nr. 804, 2021, doi: https://doi.org/10.3390/s21030804.
    3. A. Samad, A. Maali, B. Laquai, und U. Vogt, „Particulate Matter Profiles along the Rack Railway Route Using Low-Cost Sensor“, Atmosphere, Bd. 12, Nr. 126, 2021, doi: https://doi.org/10.3390/atmos12020126.

    A. Samad und U. Vogt, „Räumliche und zeitliche Variabilität der NO2- und Feinstaubkonzentrationen entlang einer verkehrsreichen Bundesstraße in Stuttgart“, Gefahrstoffe Reinhaltung der Luft, Bd. 81, Nr. 07-08, S. 295–309, 2021, http://www.uc2-program.org/Samad_Vogt_Gefahrstoffe_2021.pdf.

      Dezentrale Energieumwandlung

      1. Y.-H. Chen, A. Parvez, M. Schmid, und G. Scheffknecht, „Reforming of tar model compounds over sustainable and low-cost biochar: Special focus on spontaneous gasification reactivity and tar reforming kinetics for reformer design“, Chemical Engineering Journal 408, Nr. 127350, 2021, doi: https://doi.org/10.1016/j.cej.2020.127350.
      2. S. Hafner, M. Schmid, und G. Scheffknecht, „Parametric Study on the Adjustability of the Syngas Composition by Sorption-Enhanced Gasification in a Dual-Fluidized Bed Pilot Plant“, Energies, Bd. 14, Nr. 399, 2021, doi: https://doi.org/10.3390/en14020399.
      3. G. Hartfuß und M. Schatz, „Thermodynamic analysis of the HAT-process for micro gas turbines“, 12th European Conference on Turbomachinery Fluid dynamics & Thermodynamics, Paper ID ETC2017-375, 2021, doi: https://doi.org/10.29008/ETC2017-375.
      4. M. Hornberger, J. Moreno, M. Schmid, und G. Scheffknecht, „Experimental investigation of the calcination reactor in a tail-end calcium looping configuration for CO2 capture from cement plants“, Fuel, Bd. 284, 2021, doi: https://doi.org/10.1016/j.fuel.2020.118927.
      5. T. Kertthong, Y.-H. Chen, M. Schmid, und G. Scheffknecht, „Steam reforming of hydrocarbons from sorption enhanced gasification of biomass: Influence of tar model compounds on methane conversion and catalyst behavior“, Proceedings of the 29th European Biomass Conference (EUBCE), 26 - 29 April 2021, S. 522–525, 2021.
      6. J. Moreno, M. Hornberger, M. Schmid, und G. Scheffknecht, „Oxy-Fuel Combustion of Hard Coal, Wheat Straw, and Solid Recovered Fuel in a 200 kWth Calcium Looping CFB Calciner“, Energies 14, 2162, 2021, doi: https://doi.org/10.3390/en14082162.
      7. J. Moreno, M. Hornberger, M. Schmid, und G. Scheffknecht, „Part-Load Operation of a Novel Calcium Looping System for Flexible CO2 Capture in Coal-Fired Power Plants“, Ind. Eng. Chem. Res. 60, 19, 7320–7330, 2021, doi: https://doi.org/10.1021/acs.iecr.1c00155.
      8. A. M. Parvez, S. Hafner, M. Hornberger, M. Schmid, und G. Scheffknecht, „Sorption enhanced gasification (SEG) of biomass for tailored syngas production with in-situ CO2 capture: Current status, process scale-up experiences and outlook“, Renewable and Sustainable Energy Reviews, Volume 141, May 2021, 110756, 2021, doi: https://doi.org/10.1016/j.rser.2021.110756.
      9. L. Santamaria, M. Beirow, F. Mangold, G. Lopez, M. Olazar, M. Schmid, Z. Li, und G. Scheffknecht, „Influence of temperature on products from fluidized bed pyrolysis of wood and solid recovered fuel“, Fuel, Bd. 283, 2021, doi: https://doi.org/10.1016/j.fuel.2020.118922.
      10. M. Schmid, S. Hafner, und G. Scheffknecht, „Experimental Parameter Study on Synthesis Gas Production by Steam-Oxygen Fluidized Bed Gasification of Sewage Sludge“, Appl. Sci. 11, 579, 2021, doi: https://doi.org/10.3390/app11020579.
      11. M. Schmid, S. Hafner, S. Biollaz, J. Schneebeli, G. Waizmann, und G. Scheffknecht, „Steam-oxygen gasification of sewage sludge: Reduction of tar, H2S and COS with limestone as bed additive“, Biomass and Bioenergy Volume 150, 106100, 2021, doi: https://doi.org/10.1016/j.biombioe.2021.106100.

      Stromerzeugung und Automatisierungstechnik

      1. K.-K. Cao, J. Haas, E. Sperber, S. Sasanpour, S. Sarfarazi, T. Pregger, O. Alaya, H. Lens, S. R. Drauz, und T. M. Kneiske, „Bridging granularity gaps to decarbonize large-scale energy systems—The case of power system planning“, Energy Science & Engineering Volume 9, Issue 8, August 2021, Pages 1052-1060, 2021, doi: https://doi.org/10.1002/ese3.891.
      2. K.-K. Cao, T. Pregger, J. Haas, und H. Lens, „To Prevent or Promote Grid Expansion? Analyzing the Future Role of Power Transmission in the European Energy System“, . Front. Energy Res. 8:541495, 2021, doi: https://doi.org/10.3389/fenrg.2020.541495.
      3. P. Ernst, R. Singer, S. Rogalla, A. Greulich, C. Schöll, und H. Lens, „Behavior of Grid Forming Converters in Different Grid Scenarios - Result of a Test Campaign on a Megawatt Scale“, in 20th Wind Integration Workshop, Berlin, Sep. 2021.
      4. Jakob Ungerland, Nikhilkumar Poshiya, Wolfgang Biener, und Hendrik Lens, „Equivalent Active Distribution Networks Considering Grid Forming Converters“, Okt. 2021.
      5. P. Maucher und H. Lens, „Monitoring the Compliance of Frequency Containment Reserves Activation with the System Operation Guideline of Continental Europe“, in ETG Congress 2021, 2021, S. 1–6.
      6. G. Mitrentsis und H. Lens, „A Dynamic Active Distribution Network Equivalent for Enhancing the Generalization Capability of the Exponential Recovery Model in Stability Studies“, IEEE Transactions on Power Systems, Bd. 36, Nr. 3, S. 2709–2712, 2021, doi: 10.1109/TPWRS.2021.3053137.
      7. G. Mitrentsis und H. Lens, „Data-Driven Dynamic Models of Active Distribution Networks Using Unsupervised Learning Techniques on Field Measurements“, IEEE Transactions on Smart Grid, Bd. 12, Nr. 4, 2021, doi: https://doi.org/10.1109/TSG.2021.3057763.
      8. G. Mitrentsis und H. Lens, „Probabilistic Dynamic Model of Active Distribution Networks Using Gaussian Processes“, in 2021 IEEE Madrid PowerTech, 2021, S. 1–6, doi: 10.1109/PowerTech46648.2021.9494816.
      9. B. Müller und H. Lens, „Influence of Distribution Grid Characteristics on Redispatch Potential of Dispersed Flexibility“, CIRED 2021 Conference 20 – 23 September 2021, Paper 0164, 2021.
      10. S. Rogalla, P. Ernst, C. Schöll, A. Greulich, T. Schaupp, R. Denninger, J. Lehner, R. Singer, A. Salman, H. Lens, u. a., „Grid Forming Converters in Interconnected Systems - Final Results from the Joint Research Project VerbundnetzStabil“, in 20th Wind Integration Workshop, Berlin, Sep. 2021.
      11. C. Schöll und H. Lens, „Design- and Simulation-based Comparison of Grid-Forming Converter Control Concepts“, in 20th Wind Integration Workshop, Berlin, Sep. 2021.
      Zum Seitenanfang