Decentralized Energy Conversion


Dipl.-Ing. Reinhold Spörl

      Phone:   +49 711 685-63748
  Fax: +49 711 685-63491


↑ Table of content


M. Sc. Marcel Beirow +49 711 685-68938
M. Sc. Selina Hafner +49 711 685-67806  
Dipl.-Ing. (FH) Heiko Holz +49 711 685-63395 mail_heik.hol_ifk 
M. Sc. Matthias Hornberger +49 711 685-67801
M. Sc. Henning Luhmann +49 711 685-68931
M. Sc. Joseba Moreno +49 711 685-63562
M. Sc. Max Schmid +49 711 685-63394
M. Sc. Tim Seitz +49 711 685-63393
M. Sc. Gebhard    Waizmann     +49 711 685-68939   
M. Sc. Lena Wörz +49 711 685-67802

↑ Table of content

Doctorate students

M. Sc. Eng. Yen-Hau   Chen +49 711 685-69498  
M. Sc. Georg      Hartfuß        +49 711 685-65582 mail_heik.hol_ifk       
M. Sc. Thiansiri Kertthong +49 711 685-65585  

↑ Table of content


The work of the department of Decentralized Energy Conversion (DEU) is focused mainly in the area of combustion and gasification process optimization for decentralized heat and power generation from biogeneous and fossil fuels, specifically in the areas of flameless combustion and fluidized bed gasification. Based on our experience in fluidized bed technologies, new processes for CCS (Carbon Capture and Storage) are currently being developed with the aim of commercialization. Several test facilities are available for experimental investigations at the IFK experimental test centre (i.e. lab and pilot scale (dual) fluidized bed reactors, scaled cold FB cold models, flameless burners, biomass-fired resorption chiller). Currently the work of the department is focused on:

Carbon Capture and Storage

  • Calcium Looping (Post-combustion capture) – Separation of CO2 from power plant flue gases with natural limestone
  • Chemical Looping (Combustion with pure oxygen) – Combustion of coal using pure oxygen supplied in solid form by regenerable metal oxides
  • Oxyfuel CFB (Combustion with pure oxygen) – Combustion of coal with pure oxygen in a circulating fluidized bed reactor


  • Sorption Enhanced Reforming (SER) – Gasification of solid fuels (biomass, coal) for the production of a hydrogen rich product gas
  • Air gasification of biomass
  • Fundamental research on formation and conversion of tars in gasifiers


  • Flameless combustion of gaseous, liquid and solid fuels
  • Combustion of solid fuels (RDF, biomass, coal) in fluidized beds

↑ Table of content


Ongoing projects:
 ¤  Bio2CNG – Energetically optimized gasification process for the conversion of biogenic residues into CNG-fuel
Production of Bio-CNG (Compressed Natural Gas) from lignin rich biogenic residues is of economical and as well ecological interest but requires a thermo-chemical conversion. The latter is comprised of the gasification of the biomass to syngas (typically at: 700 - 900 °C) and its subsequent methanation (typically at: 300 - 500 °C). The conversion efficiency can be improved significantly by integration of the exothermic methanation and the endothermic steam gasification process. The optimization potential will be analyzed experimentally within the project, which is funded by the Vector Stiftung. A high pressure gasification reactor, tailored for that purpose, will be designed and constructed.
Contact person:  Gebhard Waizmann
Project duration: 3 years
 ¤  FLEDGED – Development of a flexible process for the production of dimethyl ether from biomass
FLEDGED is a project funded by the EU Horizon 2020 program, in which a flexible and low cost process for the production of dimethyl ether (DME) from biomass will be developed and demonstrated under industrially relevant conditions. The project focuses on the sorption enhanced gasification (SEG) to produce a tailored syngas and on the steam sorption enhanced DME synthesis as the two key processes. The department of Decentralized Energy Conversion (DEU) investigates the SEG process with biomass and biogenic residue feedstocks experimentally at two different dual fluidized bed facilities (laboratory and pilot scale). Within the experimental investigations stationary gasification conditions as well as the modification of the SEG process to flexibly integrate the addition of hydrogen from water electrolysis into the process are considered.
Contact person:  Selina Hafner
Test facilities: DIVA/ELWIRA, MAGNUS
Project duration: 36 months
 ¤  FlexiCAL – Development of flexible coal power plants with CO2 capture by Calcium Looping
FlexiCAL is a research project funded by the European Commission’s Research Fund for Coal and Steel (RFCS). The main objective of this research project is based on assessing and improving the flexibility of coal power plants with CO2 capture using the Calcium Looping technology. At IFK, a fluidized bed reactor configuration with the Calcium Looping carbonator operating in a turbulent mode and with material extraction from the bottom is investigated experimentally. This plant concept allows a higher flexibility in respect to plant loads, since flue gas load and sorbent circulation are decoupled. Within the scope of this project, the flexibility potential, operational limits and dynamic plant behavior are investigated.
Contact person:  Joseba Moreno
Test facility:  MAGNUS
Project duration: 3 years
 ¤  DISS – Data-Integrated Simulation Science
The main objective of the research cooperation DISS between the University of Stuttgart and the University of Heidelberg is to develop and to apply methods of data assimilation. Focusing on thermochemical energy storage systems, experiments and simulations on different levels will be combined. The results enable prognoses on other levels and thus a continuous optimization of simulations and experiments.
At IFK particle-scale models to simulate thermochemical high-temperature energy storage systems based on CaO/CaCO3 will be developed. The models include heat and mass transfer inside the particle and describe the local and temporal changes in physical properties of the particle and process parameters. With such an approach, the effects of diverse process steps on the reactivity and properties of the calcium oxide particle can be simulated.
Contact person:  Lena Wörz
Project duration: 3 years
 ¤  Res2CNG, federal state of Baden Württemberg – Innovative production of SNG and CNG from biogenic residues
Res2CNG addresses conversion of biogenic residues to methane based fuels with the integration of renewable electrolysis hydrogen. The main focus is on optimal and efficient carbon utilization.
At IFK, the steam-oxygen fluidized bed gasification of biogenic residues is investigated experimentally. The focus is on characterizing the syngas composition and occurring gas impurities. As to that, a hot gas cleaning system is developed and tested to improve the syngas quality for the following methanation process.
Contact person:  Max Schmid
Test facility:  ELWIRA
Project duration: 3 Years
 ¤  CEMCAP – CO2 capture from cement production
CEMCAP is a project funded by Horizon 2020 which addresses CO2 capture from cement production. The primary object of CEMCAP is to prepare the ground for large-scale implementation of CO2 capture in the European cement industry. The department of Decentralized Energy Conversion investigates and optimizes the Calcium-Looping (CaL) process for cement plant application. Synergy effects between the Calcium-Looping process and the cement production offer a high potential for improvement. Exemplarily, the deactivated sorbent of the Calcium-Looping process can be re-utilized as feedstock for the clinker production leading to high make up flows of sorbent and therefore to increased CO2 capture performance and energy efficiency.
The department of Firing Systems (KWF) is also participating in the CEMCAP project. It investigates the implementation of oxy-fuel technology in the cement process.
Contact person: Matthias Hornberger, Heiko Holz, Reinhold Spörl
Test facility: MAGNUS
Project duration: 36/42 months
 ¤  Öl-FLOX – Development and characterization of a low emission burner for liquid fuels
Within the scope of this project, the development of a FLOX®-type burner for liquid fuels is pursued together with the Oel-Waerme-Institut GmbH and e-flox GmbH. Flameless Oxidation (paraphrased by the term FLOX®) is a low emission combustion process without visible flame which is already widely applied for gaseous fuels in industrial applications. A major advantage of this combustion technology is the inherently lower emission of the pollutant nitrogen oxide (NOx) which allows for meeting emission regulations without additional flue gas treatment. The Öl-FLOX-project aims to develop a FLOX®-type burner which can run both on fuel oil and on biogenic liquid fuels in order to open up new fields of application.
Contact person:  Henning Luhmann
Test facility: Boiler with FLOX®-type burner of the BIO-COOL facility
Project duration: 2,5 years


Recently completed projects: 
 ¤  FLOX-COAL-II – Development of Scale-Up Methodology and Simulation Tools for the Demonstration of PC-FLOX Burner Technology in Full-Scale Utility Boilers
Recently, application of flameless combustion technology to solid fossil fuels like pulverised coal has become of interest. The goal of ultra low NOx-emissions shall be achieved by the separation of coal/primary air and combustion air and by the avoidance of temperature peaks in the flame front.
Since coal combustion in flameless mode differs from conventional flame mode in terms of near burner aerodynamics, fuel conversion, heat transfer and emission behaviour, experiments are carried out at IFK's pilot scale test rig KSVA. Based on the experimental results FLOX-specific CFD sub-models are developed and integrated in IFK's CFD code AIOLOS. Eventually, a validated scale-up methodology is aimed for. It is used to design full-scale burners for wall fired and tangentially fired utility boilers. In order to bring the technology closer to the utility plant market, a CFD study is carried out delivering technical solutions for utility boilers and an economical assessment of PC-FLOX burners' application to full scale utility boilers.
This project is funded by the RFCS programme of the European Commission. Project management (scientific and technical) is carried out by IFK.
Coordinator and contact person: Max Weidmann
Test facility: KSVA
Project duration: 3 years
 ¤  ReCaL – Novel Calcium Looping CO2 capture process incorporating sorbent reactivation by Recarbonation
In diesem Europäischen Forschungsprojekt steht die Weiterentwicklung des Calcium-Looping Prozesses zur CO2-Abscheidung durch eine neuartige Technik zur Reaktivierung des Sorbens im Vordergrund.
Am IFK wird die Nutzung des verbrauchten Sorbens des Calcium-Looping-Prozesses zur In-situ Entschwefelung in Kraftwerkskesseln mit zirkulierender Wirbelschichtfeuerung untersucht. Dazu werden Verbrennungsversuche mit Steinkohle an der 150-kWth-Pilotanlage durchgeführt.
Contact person: Theodor Beisheim, Gerrit Hofbauer, Heiko Holz
Test facility: MAGNUS
Project duration: 3 years
 ¤  HGF – Synthetische flüssige Kohlenwasserstoffe – Speicher mit höchster Energiedichte
To push the change of the futures supply of liquid fuels for traffic and transportation to regenerative energy, as a well as to store energy with a high energy density, in this research network the creation of liquid hydrocarbons out of biomass is investigated. The IFK investigates the gasification of different residual biomasses like straw, wood waste or manure. As gasification process the SER-gasification, the staged steam gasification and the oxygen gasification is investigated. To demonstrate the CO2 separation out of the SER flue gas as a carbon source for Fischer-Tropsch synthesis in a pilot plant scale, the regenerator of the SER process is operated with an oxygen regeneration.
Contact person: Nina Armbrust, Daniel Schweitzer, Andreas Gredinger
Project duration: 3 years
 ¤  KIC InnoEnergy – DEBUGGER
In this joint research project the gasification of dried manure and sewage sludge is investigated. Additionally to the energetic use of solid waste, the recovery of nutrients out of gasification residues is investigated to close the nutrient cycle.
Contact person: Daniel Schweitzer, Vladimir Stack
Project duration: 1 year
 ¤  KIC InnoEnergy – DEMITAR (Innovation) –  Quasi-Continuous online Tar Measurement
Condensable hydrocarbons (tars) are a major problem in the implementation of gasification projects when they fall below the dew point and condense in downstream equipment. This affects the operation of the gasifier. The determination of the tars quality and quantity is therefore essential for gasification processes. The determination of tars was done previously with time-and cost-intensive sampling and subsequent laboratory analysis. The aim of the DEMITAR project is to develop a technique of an online tar measurement device that can be used reliably and easily in gasification power plants and that provides real time tar concentrations to the operator.
Contact person: Andreas Gredinger, Vladimir Stack
Project duration: 3 years
 ¤  Bioenergie 2021 (BMBF) - Innovative Erzeugung von gasförmigen Brennstoffen aus Biomasse
This joint research project aims at optimizing the energetic and material utilization in the generation of gaseous fuels like substitute natural gas (SNG) or hydrogen from biomass. Processes to be investigated consist of the fermentative conversion to biogas and the thermo-chemical conversion by gasification. In addition to wet biomass for anaerobic fermentation, dry materials containing wood cellulose like wood or straw will be used.
Contact person: Daniel Schweitzer, Vladimir Stack, Norman Poboss
Test facility: VERONIKA
Project duration: 3 years
 ¤  CAL-MOD (EU) - Modelling and experimental validation of Calcium Looping CO2-capture process for near-zero CO2 emission power plants
This project focuses on the development and validation of advanced modeling and simulation tools required for implementing the Calcium Looping (CaL) process at commercial scale. Development of realistic process and steam cycle models, reactor operation at bench-scale and industrial expertise will lead to producing guidelines for the design and dimensioning of commercial scale CaL systems. A techno-economical study, including also integration at a cement industry plant, will be performed with reference to a medium scale existing plant and a new state of the art large scale plant. The project is funded in part by the RFCS Framework of the European Commission and is administratively and scientifically coordinated by IFK.
Coordinator: Heiko Dieter
Contact person:  Glykeria Duelli (Varela), Marcel Beirow, Theodor Beisheim, Heiko Dieter
Test facility:  DIVA/ELWIRA
Project duration: 3 years
 ¤  CLOCK (COORETEC) - Chemical Looping Combustion of coal for CO2-capture in an atmospheric fluidized bed reactor for a steam-cycle process
The Chemical Looping Combustion (CLC)-process is used for CO2 free power generation from coal combustion. The process consists of two connected fluidized beds and a circulating solid oxygen carrier. In the air reactor the oxygen carrier gets oxidized with air and in the fuel reactor it gets reduced with coal. A flue gas mainly consisting of CO2 exits the fuel reactor. After condensing the steam the CO2 can be purified, compressed and stored. Unlike the oxyfuel process, chemical looping combustion does not require a cryogenic air separation unit and has therefore electric efficiencies similar to that of a traditional power plant.
The CLOCK project focuses on the experimental investigation of synthetic and natural oxygen carriers and simulation of chemical looping on the commercial scale.
The research on the natural oxygen carriers at the IFK are carried out on a dual fluidized bed reactor system to optimize the conversion of fuel as well as to define the optimum operating conditions for the CLC- process with coal.
Contact person: Florian Mayer, Ajay Bidwe
Test facility: DIVA/ELWIRA
Project duration: 3 years
 ¤  CATS (Industry) - CaO als CO2-Trägermaterial zur CO2-freien Kohleverstromung
The Calcium Looping process is a newly developed technology for the efficient capture of CO2 from power plant flue gases. The CATS project aims at demonstrating this process in a 200 kwth pilot scale facility. Therefore, a pilot scale plant consisting of two dual circulating fluidized bed reactors has been erected at the institute. The findings from the successful demonstration of the calcium looping process will be used for design of a 20 MWth demonstration plant.
Contact person: Heiko Dieter, Craig Hawthorne
Test facility: MAGNUS
Project duration: 4,5 years
Within the scope of the BIOCOOL project, a facility has been erected which generates heat and cooling energy through the combustion of biomass. This interesting alternative of great economic and ecologic advantages combines and integrates flameless combustion with a resorption chiller. By means of flameless combustion, the calorific value of low grade fuels is utilized to drive a refrigerating machine whose state-of-the-art technology make it capable of generating cooling energy even from waste heat and solar energy.
Contact person: Miguel Alain Dominguez Mendoza
Test facility: BIO-COOL
Project duration: 2 years
 ¤  BtG-BS-flex (BMU) - FuE - Plattform "BtG" - Energetische Nutzung biogener Reststoffe mit AER-Technologie - Modul F1: Brennstoff-Flexibilisierung
The overall objective of the research module F1 "flexible fuel" is to assess the potential utilization of different regional biomass fuels from the Swabian Alb in a AER-demonstration plant. In this module, biomass fuels which do not directly compete with food and heat production (e.g. landscaping material, agricultural residues, etc.) are to be investigated regarding the feasibility of gasification under AER conditions.
Contact person: Norman Poboss
Test facility: DIVA/ELWIRA
Project duration: 3 years
 ¤  CaOling (EU) - Development of postcombustion CO2 capture with CaO in a large testing facility
This project aims at the scale-up of one of the most promising concepts for CO2 capture from coal power plants: post-combustion calcium looping systems. The project focuses on the experimental pilot testing and scaling up of the process at scales in the 1 MW range. The 1 MW calcium looping pilot will be built in the Hunosa 50 MWe coal power plant (circulating fluidized bed) of “La Pereda”, using a side stream of flue gases of the commercial plant. The Project is funded in part by the FP7 Framework of the European Commission.
Contact person: Glykeria Duelli (Varela), Alexander Charitos
Test facility: DIVA/ELWIRA
Project duration: 3 years
 ¤  ADECOS ZWSF (COORETEC) - Assessment of the large-scale and economical feasibility of the oxyfuel combustion process in a circulating fluidized bed
One possibility for CO2 capture in coal fired power plants is the combustion of fuels with pure oxygen. The generated flue gas consists mainly of CO2 which can be purified and compressed for storage. Up to now, this so called oxyfuel-process has only been investigated for pulverized coal (PC) combustion. The goal of this project is the investigation of oxyfuel combustion for circulating fluidized bed (CFB) boilers.. In a CFB it is also possible to increase the maximum O2 concentration in the combustion chamber to a higher level compared to PC and thus increase process efficiency.
Contact person: Gerrit Hofbauer, Theodor Beisheim
Test facility: MAGNUS
Project duration: 3 years
 ¤  DLR@UniST (Land Baden-Württemberg) - Gemeinsam die Zukunft gestalten
Development and implementation of an integrated, procedural approach for treatment and conversion of biomass for the production of gaseous fuels for utilization in fuel cell and gas turbine systems.
Contact person: Norman Poboss, Nina Armbrust
Test facility: VERONIKA
Project duration: 2.5 years
 ¤  Cluster I (MLR) - Systemanalyse Erzeugung und Nutzung biogener Gase in Baden-Württemberg
The project objective is to examine the potential, process chains and technologies for the production of biogenic gases and to classify and compare theses technologies with other processes with respect to the energy supply in Baden-Wuerttemberg. The project therefore especially focuses on practical experiments and investigations within the scope of the research platform Baden-Wuerttemberg, the biogas facility at the "unteren Lindhöfen", the bioliq facility at the Forschungszentrum Karlsruhe and the wood gasification facility under construction in Geislingen-Türkheim.
Contact person: Norman Poboss
Test facility: -
Project duration: 4 years
 ¤  Kohle-Flox (KW21)
The project aims to develop a new pulverized coal burner based on the FLOX (FLameless OXidation) technology. Different designs of a bench-scale FLOX burner are to be tested under various operational conditions. Based on bench-scale experimental experience, literature study and basic numerical modeling, a pilot-scale FLOX burner is to be developed. Substantial pilot-scale experimental investigation is to be carried out in order to demonstrate feasibility and NOx reduction potential of the technology. Based on the experimental studies, the benefits over conventional burners are to be determined. Furthermore, using evaluation criteria the impact of FLOX combustion on power plant operation and associated advanced combustion concepts are to be derived.
Contact person: Dragisa Ristic
Test facility:  KSVA
Project duration: 3 years
 ¤  Brennstoffflex (MWK/Industry) - Brennstoffflexibilisierung für Kombi-Kraftwerke mit der Option eines CO2- freien Betriebs. Teil A: Erzeugung wasserstoffreicher Gase aus festen Brennstoffen in einem kommunizierenden Wirbelschichtreaktor - Absorptionsgestützte Reformierung von Biomasse und Braunkohle
A 200 kWth dual fluidized bed gasification pilot plant (MAGNUS) based on the Sorption Enhanced Reforming (SER) process was designed, constructed, and commissioned in 2010. Week long measurement campaigns were conducted to demonstrate the process on a pilot scale level. The operation of the pilot plant produced a hydrogen-rich gas (> 70 vol.-%) with a high calorific value suitable SNG production or for combustion in a gas motor or gas turbine. Furthermore, a design for a commercial SER-plant was completed based on the results and operating experience obtained from the pilot plant.
Contact person: Craig Hawthorne, Heiko Dieter
Test facility:  MAGNUS
Project duration: 3.5 years
 ¤  BioenergieFlex BW – Storage and flexible operating modes for conservation of resources and balancing fluctuations of electricity from renewable energies
In this research project existing and future bio energy plants (fermentation and gasification) in Baden-Württemberg will be investigated to determine if they are suitable to extend energy storage and to compensate for wind and solar power fluctuations. The research project analyzes the potential and limitations for a flexible use of electricity supply; covering “biomass storage” by using flexible fuel or substrate loading of bio-energy plants, as well as the “gas storage” of biogas or SNG (methanation) in internal or external storages and different strategies for heat utilization. The results indicate a funding model that is to be developed for the flexible operation of bioenergy plants, including necessary storages.
Contact person: Marcel Beirow, Heiko Dieter
Test facility: MAGNUS
Project duration: 3 years
 ¤  Power&Biomass2Gas (P&B2G) – Potentials for storage of renewable energies with gaseous hydrocarbons from biomass usage and to support the electricity grid in Baden-Württemberg and Germany
The research project P&B2G involves the study of a completely integrated flexible energy approach using existing biomass for an increasing contribution of renewable energies. Based on a concept of biomass gasification, water electrolysis and methanation, different options for storing renewable electricity and also their benefits for power grid stability are examined. In the research project P&B2G, optimal plant locations are determined by interfaces between power and gas grids, including the availability of biomass. A further Life Cycle Assessment (LCA) will help determine the complete benefits and ecological advantages for the whole of Baden-Württemberg and Germany’s electricity supply.
Contact person: Marcel Beirow
Project duration: 3 years

↑ Table of content

Patents and Patent Applications

Beeinflussung des Wärmehaushaltes bei der Wasserdampfvergasung durch Oxidations- und Reduktionseffekte (pending)

↑ Table of content


Publications 2017

Publications 2016

Publications 2015

Publications 2014

Publications 2013

Publications 2012

Publications 2011

further Publications

↑ Table of content