

Universität Stuttgart

Institut für Feuerungs- und Kraftwerkstechnik Prof. Dr. techn. G. Scheffknecht

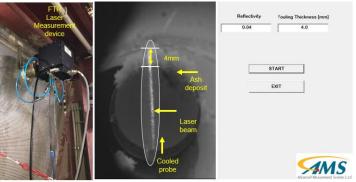
Validation of Laser based thickness and reflectivity measurement of deposited ashes.

Background

A novel and nonintrusive **laser-based** device which measures ash deposition layer formation in solid fuel combustion is deployed at the pilot scale plant of IFK. A real time measurement of dual properties (thickness and reflectivity) of deposited ash on both ceramic and corrosion probes can be simultaneously determined.

Masters Thesis

2023


Ausschreibung

Process

Several solid fuels (e.g Coal, Biomass, Sewage Sludge and Solid Recovered Fuels) will be either mono- or co-fired at the Drop Tube Furnace (BTS). A parallel measurement of deposit layer thickness and reflectivity will be conducted. Efforts will be made to link deposition rate with deposition height determination using a novel laser based and a deposition rated device.

Goals and required skills

- 1. Literature review (Laser measurement)
- 2. Development of validation methodology
- 3. Carrying out several test campaigns
- 4. Results presentation

Literature Experimentation Practical work

Requirement

- Independent and self reliant
- Methodology oriented work ethics
- Interest for experimental work
- Readiness to work longer hours
- Interest in handling solid fuels
- Interest to explore and learn new software

Starting: March 2023!

HIWI position is a possibility during your thesis work and German Speaking students are encouraged to apply.

Supervisors and Contacts: M.Sc. Abdou Suso

Dept. Combustion and Power Plant Technology (KWF)

Abdou.Suso@ifk.uni-stuttgart.de Tel. 0711/685 63391, Raum 1.59

Examiner: Prof. Dr. techn. G. Scheffknecht

IFK, Pfaffenwaldring 23, 70569 Stuttgart www.ifk.uni-stuttgart.de/lehre/angebot/studentische-arbeiten/

