

Institut für Feuerungs- und Kraftwerkstechnik Prof. Dr. techn. G. Scheffknecht

Ausschreibung

Untersuchung des Zünd- und Abbrandverhaltens von Einzelpartikeln in unterschiedlichen Oxyfuel-Atmosphären

Masterarbeit

Hintergrund

Das Oxyfuel Verfahren ist eine Technologie zur Abscheidung von CO_2 bei Verbrennungsprozessen. Die Hauptbestandteile der Verbrennungsatmosphäre sind dabei CO_2 , O_2 und H_2O . Dies wird durch die Rezirkulierung von Rauchgas erreicht, dem reiner Sauerstoff als Oxidationsmittel beigemischt

wird. Das Ziel ist es, eine möglichst hohe CO_2 Konzentration im Rauchgas zu erhalten um die Abscheidung und Weiterverarbeitung des Gases zu erleichtern. Da sich die Eigenschaften von CO_2 und H_2O in Bezug auf Wärmeübertragung und Diffusivität deutlich von N_2 unterscheiden ändert sich das Verbrennungsverhalten der einzelnen Brennstoffpartikel. Dieses Verhalten soll in einem Laborofen, unter für Rostfeuerungsanlagen relevanten Randbedingungen, untersucht werden.

Verfahren

Die Versuche werden in einem Rohrofen durchgeführt. Aufbauend auf eine bereits abgeschlossene Arbeit sollen weitere Versuchseinstellungen durchgeführt werden. Anschließend soll der Einfluss auf das Verbrennungsverhalten der Einzelpartikel evaluiert werden

Ziel und Vorgehensweise

- 1. Literaturrecherche zum Thema Oxyfuel und Rostfeuerungsanlagen
- 2. Erörterung relevanter Versuchseinstellungen
- 3. Verbrennungsversuche mit Parametervariation
- Beurteilung und Zusammenfassung der Ergebnisse

Voraussetzungen

- Selbstständige Arbeitsweise
- Saubere Dokumentation
- Interesse an aktuellen Umweltproblemen und möglichen Lösungen
- Interesse an experimenteller Arbeit

Beginn der Arbeit: sofort!

Betreuer und Kontakt:

M.Sc. Alexander Mack Abt. Kraftwerksfeuerungen (KWF)

Prüfer: Prof. Dr. techn. G. Scheffknecht

alexander.mack@ifk.uni-stuttgart.de Tel. 0711/685 68941, Raum 1.73

